
~ Pergamon 
www.elsevier.comhocate/jappmathmech 

J. Appl. Maths Mechs, Vol. 64, No. 4, pp. 547-557, 2000 
© 2000 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain PII: S0021-8928(00)00080-0 0021-8928/00/S--see front matter 

THE TWO-DIMENSIONAL MOTIONS OF A GAS 
WITH A SPECIAL ADIABATIC EXPONENTt 

S. V. G O L O V I N  

Novosibirsk 

e-mail: sergey@hydro.nsc.ru 

(Received 7 October 1999) 

An invariant submodel of the two-dimensional equations of gas dynamics, constructed on an operator which is a combination 
of the time-shift, rotation and projective operators, is investigated using the PODMODELI program [1]. A canonical form of 
the submodel is constructed and a preliminary analysis of it is carried out (the group property, the hyperbolicity region and the 
first integrals). The self-:~imilar solution of the submodel is investigated in detail. It determines the solutions of the submodel in 
question with closed invariant streamlines. Using a hierarchy of submodels, first integrals are obtained in the "second-lever' 
submodel. A qualitative description of the nature of the motion is given (the contact characteristics and the particle trajectories). 
It is shown that the solution possesses discrete symmetry - invariance under rotation around the origin of coordinates by an 
angle that is a multiple of 2"rr/N, with a certain natural N. It is pointed out that for certain values of the parameters, solutions 
of this type describe the gas motion with vacuum regions. The features of the flows obtained are illustrated by examples - the 
exact solutions of the gas - dynamic equations, which describe the expansion of a gas to a vacuum in an infinite time. © 2000 
Elsevier Science Ltd. All rights reserved. 

Ano the r  submodel ,  to construct  which a projective symmetry  is also used, was described in detail 
previously in [2]. 

1. P R E L I M I N A R Y  D A T A  

In a polar  system of  coordinates,  we will consider the two-dimensional  gas-dynamic equat ions for a 
polytropic gas with adiabatic exponent  ~ = 2 

Du+p-IVp=r-i(v2,-uo), Dp+pdivu = O, 
p=Sp 2, D=~t+U3r+r-lt#go 
V = (/gr,r-I/~e), d i v u = u r + r - l u + r - l v o  

D S =  0 

(1.1) 

Here  u is the radial componen t  and ~ is the tangential component  of  the velocity vector u, p is the density, 
• p is the pressure artd S is the entropy. These functions depend  on the polar  coordinates  (r, 0) and the 

time t. 
I t  is well known [13, 4], that  Eqs (1.1) allow of  a 10-dimensional Lie algebra L10, which is an extension 

of  the Galilean algebra by two extensions and a projective operator.  It  should be noted that the projective 
opera tor  allows of  gas-dynamic equat ions only for  a chosen adiabatic exponent.  Following Nikol'skii 
[5], we will call this adiabatic exponent  special (~ = 2 for two-dimensional  mot ions  and ~/= 3 for one- 
dimensional  motions).  

We will investigate the invariant submodel  of  Eqs (1.1), const ructed by means  of  the opera tor  

X = (t 2 + I)0, + trOr + aD o + ( r -  t u ~ ,  - tv~ v - 4tpOp - 2tpOp 

(a I> 0 is an arbitrary real parameter ;  for different values o f  a the opera tor  X generates  subalgebras 
that are non-conjugate  in L 10). In  accordance with the algori thm described earlier:~ the representat ion 
o f  the invariant solution can be written in the form 
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~O.,q>) + t~. (ff O.,~p)+ a)Z. ~(Z.,~o) ~(Z.,~p) 
U - - - ~ ,  V = t 2 3 / ~ + 1  " ' P - - -  ( t  2 + 1 )  2 '  P = t 2 + !  ( 1 . 2 )  

S=S(~,cp), ~,=rl t2~-~+l, q)=O-aarctgt  

Substituting the representation of solution (1.2) into system (1.1) we obtain the canonical form of 
the submodel 

~ + px / ~ = ((a +O-) 2 - I);~, 

5~ + ~(~ + ~ , ) =  - ~ / x ,  

Do- + P9 I(PZ2 ) = -2(a +o-)E I 

b'g = o, ~ = g~2, ~ = ~ax +~, 
(1.3) 

2. ANALYSIS OF THE SUBMODEL.  FIRST INTEGRALS 

The third equation of (1.3) enables us to introduce an invariant stream function ~(h, ~p) by the relations 

Yx =-~¢p, V, =TtE~ (2.1) 

From the equations for the velocity components we then obtain, by a standard procedure, the invariant 
Bernoulli integrals and the entropies 

E2 +Z~-2 +(l_aZ)2L2 +4S~= F(¥), S=S(~) (2.2) 

with arbitrary functions F and S. The vorticity o~ for the gas-dynamic equations in a polar system of 
coordinates can be written in the form 

(I) = - - r  "1U o + !~ r + r I O 

We will introduce the invariant vorticity 

~ = Zo--~ + 2(u-" + a ) -  Z,-~E,, 0}----- ~/(t2 +I) 

The following invariant vorticity integral holds 

~ - s ~  2 = ~ a ( v ) ( s ' = a s / a ~ )  (2.3) 

(G is an arbitrary function). 
System (1.3) has a mixed elliptic-hyperbolic form. The characteristics will be sought in the form 

h(h, ~p) = const. It turns out that there is always a double characteristic uhx + ~h,p = 0 and two further 
characteristics are possible, defined by the equation 

(Eh>. +u'h, )2 _ E2 (h~ + Z-2h~) = 0 (2.4) 

(here 52 = 2fi/~ is the square of the invariant velocity of sound). In order that the quadratic form in 
ha and h,  on the left-side of (2.4) should not be sign-definite, it is necessary that the determinant of 
the matrix of this quadratic form should be negative. A check of this requirement leads to the following 
assertion. 

Lernma 1. System (1.3) is hyperbolic in the region defined by the inequality 

(2.5) 
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3. G R O U P  P R O P E R T Y .  THE S E L F - S I M I L A R  S O L U T I O N  

The group classification of submodel (1.3) with respect to the parameter a shows that for all values of 
the parameter the permissible Lie algebra is isomorphic to the factoralgebra NorL10 {X}/{X} (here the 
notation {X} denotes a Lie algebra generated by the operator X). It is when a ~ I that submociel (1.1) 
allows of the operators 

and when a = 1 also 

H t = ~ ,  H 2 = k0~. + ~'O~ - 2 ~ ,  H 3 = ffO~ + ~a5 

/'/'4 = cos qx3~. - ~- I  sin qx3~ -u"  sin (p0~ + (~,-2~ sin (p - ~,-10" cos (p)~v- 

h'~ = sin q~0~. + ~,-| cos q)0~ +6 -  cos ~00~ - (~,-2~" cos (p + ~.-16" sin ~0)0 v- 

F u r t h e r  we will consider the self-similar submodel of submodel (1.3), generated by the extension 
operator 

H = ~ .  + ~'a~ + k~0~ + (k - 2 ) ~  

(k is an arbitrary real parameter). Substituting the representation of the solution 

~" = U(~o)~., u- = V (~ ) ,  p = P(~)~.* 

" R(~0)~, k-2, S = S(IP) ~,-k+4 (3.1) 

into Eqs (1.3) we obtain the submodel equations 

VV'+P'/R=-2(V+a)U, VU'=(V+a) 2-I-U 2-kP/R 

(VR)' = -kRU, Vs' = (k - 4)Us (3.2) 

Remark I. It can be verified that the "two-step" submodel (3.2) (the submodel for submodel (1.3)) can be obtained 
directly from the gas-dynamic equations as a "single-step", by considering the invariant solution of Eqs (1.1) with 
respect to the subalgebra generated by the operators X and H, where 

H -~ rOr + u~ u +1~ o + kpOp + (k  - 2)p~p 

This fact is an illustration of the Lie-Ovsyannikov-Talyshev lemma [6] on the hierarchy of invariant submodels. 
It turns out that, in addition to classification, it is also of practical value, namely, it provides the possibility "inheriting" 
the first integrals of submodel (1.3). 

Consider the equations for the stream function (2.1). Substituting the representation of solution (3.1) 
we obtain 

~x=-~,*-JV((p)R((p), ye  = ~.*U(~0)R(q)) (3.3) 

When k ~ 0, by virtue of the third equation of (3.2), we hence obtain, apart from unimportant 
constants 

¥ = ~,klVRI (3.4) 

When k = 0, integrating the first equation of (3.3) with respect to h we obtain 

¥ = - In [ k I V(tp)R(~p) + ¥0(tp) 

Substituting into the second equation of (3.3) we obtain 

- In  I~.I(VR)'+ ¥o =UR 

But since, when k = 0, it follows from the equations of submodel (3.2) that (VR)' --- 0, we have 
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• o = J v(q~)R(q~)a? 

From the last equation of (3.2) we have UR = -VRs'/(4s). Then, since (VR)' = 0, we have, apart from 
an unimportant additive constant, 

Ilto = - ~  VRlns 

and hence we can choose as the stream function 

ql = ln(s~ 4) (3.5) 

Having the representation for the stream function we can determine the specific form of the arbitrary 
functions S and F, which occur in the first integrals of system (1.3). We obtain the entropy integral 

s k = SolVRI *-k 

and the Bernoulli integral (et is an arbitrary constant) 

Ict lVRI 2~k, k*:O 
U2 + V2 +4sR+(I-a2)=[o~,~fs ,  k =O 

It is convenient to introduce the square of the invariant velocity of sound Z(~) 

c 2 = Zr2/(t 2 + 1) 2, Z(q~) = 2P/R 

Here the equations of submodel (3.2) are 

(Z - V2)V ' = -(k/2 + 2)ZU + 2(V + a)UV 

VU" = (V + a) 2 - 1 - U 2 - kZ/2 (3.6) 

(Z - l/z)Z "= (k - 4)Z2U/(2V) + 2(V - a)UZ 

Vs" = ( k - 4 ) U s  

The last equation can be detached and solved independently after U and V are determined from the 
first three equations. 

Using the function Z(qo) we can rewrite the integrals obtained in the form 

S = S 0 J VZ I I - k / 4  (3.7) 

U 2 + V 2 + 2 Z +  ( 1 - a  2 ) = c t , ] l  VZl (3.8) 

It can be seen from the last integral that there is an important difference in the nature of the flow 
described when a 2 I> 1 and a 2 < 1. When a 2 < 1 the surface (3.8) in (U, V, Z) space always lies in the 
half-space Z > 0, and is separated from the Z = 0 plane. Hence, over the whole region the function 
Z, and together with it the invariant density R, are positive. At the same time, when a = 1 the surface 
(3.8) passes through the point (U, V, Z)  = (0, 0, 0), and when a > 1 may intersect the Z = 0 plane, 
which denotes the occurrence of a vacuum region in the region of the gas flow. 

4. C O N T A C T  C H A R A C T E R I S T I C S .  D E S C R I P T I O N  OF T H E  M O T I O N  

The equation ~ = const defines invariant streamlines for submodel (1.3). The standard streamline is 
given by the equation 

~,=l V(~p)Z(tp)1-¼ (4.1) 

all the remaining ones being homothetic. Note that, in view of the definition of the variable ~0, the 
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functions Z and Vmust be periodic with half-period T = ~r/N (N is an integer), otherwise the solution 
will not be continuous over the whole (r, 0) plane. Hence from (4.1) we quickly obtain that when V~ 
0 submodel (3.2) del~nes the solutions of (1.3) with closed invariant streamlines. Similar flows with closed 
streamlines were obtained earlier [7, 8] for the equations of gas dynamics and an ideal incompressible 
fluid. Obviously sohJtion (3.2) itself and streamline (4.1) possess discrete symmetry - invariance under 
rotation in the (h, to) plane by an angle of 2~r/N about the origin of coordinates. We will further show 
that the invariant streamlines (4.1) in "physical" space correspond to it. 

The equations of the trajectory of a particle, starting at the initial instant t = 0 from the position 
(ro, 00), is found as the solution of the Cauchy problem (the formulation of the representation of the 
solution is used) 

d_fir = (U + t)r dtp_ V r(0) = r 0, 9(0) = 00 (4.2) 
dt t 2+1 ' "~t - t  2+I" 

Remark 2. For the differentiable function V(q~) we have: if V(q~.) = 0 for a certain q~ = ~', then along the whole 
world line, which passes through the point (t, r, q~.), the equation V(q~) = 0 holds. Conversely, if for a certain 
q~ = q~o we have V(~.) # 0, then V(~) # 0 along the whole world line, drawn through the point (t, r, ~p.). Moreover, 
the ~ = ~p.: V(~.) = 0 plane is a contact characteristic. The proof follows from the theorem of the uniqueness of 
the solution of the Czuchy problem for an ordinary differential equation. 

The integral of the first equation of (4.2) is the equation d~ -- const, which, by virtue of the 
equality 

D~ = O, D = (), + u() r + r-luc3o 

is a contact characteristic on the solutions described by this submodel. Rewriting the equation ~ -- const 
in the initial variables, we obtain 

A~t2 +1 
a = rolV(Oo)Z(O o) 1¼ (4.3) r --~ 

I VZI ¼ 

Hence, the family of surfaces which are contact characteristics of the gas-dynamic equations on the 
solutions of submo,:lel (3.2) correspond to the invariant streamlines ~ = const in the physical space 
R3(t, r, 0). The surfaces of this family are obtained from one standard surface withA = 1 by the extension 
transformation r ---> Ar  with suitable parameter A. 

In order to obtain, its level line t = to, we must turn streamline (4.1) by an angle a arctg to anticlockwise 
and extend it by a factor of ~/(t 2 + 1) with respect to the origin of coordinates. In particular, the level 
line to = 0 coincides exactly with streamline (4.1). 

The second equation of (4.2) can be integrated in quadratures 

'P d~ (4.4) t=tg~(tP'O°)' x(q~'0°)= J V(~) 
Oct 

By virtue of Remark 2 a'(to, 00) is a monotonic function of to, and, of course, the function t0(t, 00), 
obtained by inverting equality (4.4), will also be monotonic and, as can be noted, is bounded with respect 
to t. Reverting, using (1.2), to the physical variables, we obtain the equation of surfaces - the contact 
characteristics of the gas-dynamic equations, of the common position with respect to the family (4.3) 

O(t, 00) = 9(t, 00) + aarctgt (4.5) 

The surfaces of this family are marked by a ray, the vertex of which moves uniformly along the t axis, 
while it itself turns in accordance with the expression 0 = 0(t, 00), remaining parallel to the t = 0 plane. 
In particular, it therefore follows that if at some instant of time the particles are on one ray, emerging 
from the origin of coordinates, then for any t they will also be on one ray. 

The world line of each particle is obtained as the intersection of the corresponding contact 
characteristics (4.3) and (4.5). And of course, the motion of each particle is made up of two components 

- the motion along the ray and rotation together with its ray. Formula (4.3) corresponds to the first 
part and formula (4.5) corresponds to the second. 



552 S.V. Golovin 

By virtue of the lemma on the density [9, p. 157] in continuous motion a line on which p = 0 (a vacuum 
line) is a contact characteristic. Hence, if at the point (to, r0, 00) the density is non-zero, then on all the 
world lines drawn from this point the density, the pressure and the velocity of sound cannot vanish. 
And hence, it follows from Remark 2 and formula (4.3) that the particles depart an infinite distance 
from the origin of coordinates after an infinite time. 

The invariant vorticity l'l(q~) is introduced by the relations 

m = ~ ( t  2 + 1),  f~ = 2(V + a) - U' 

Using the second equation of (3.6) and the Bernoulli integral (3.8) we obtain 

f~ = t x ~  + (k / 2 - 2)Z (4.6) 
V 

Further, we obtain from (3.6) 

dZ ( k - 4 ) Z  2 + 4 ( V - a ) V Z  

dV = 4(V + a)V 2 - (k + 4)VZ 

When a = 0 this equation can be integrated in the form 

V~-4Z 3k+4 = ~ - 4 V  2 + (3k + 4)Z)  2~, 13 = const 

(4.7) 

while in the opposite case by making the replacement h = Z/(aV) it is reduced to a Bernoulli equation, 
the solution of which can be expressed in terms of the hypergeometric function 2Fl(-1/2, 3/4 + 1/k, 1/2; 
kh/2). For the particular value of the parameter k = 4 the solution of Eq. (4.7) can be expressed in 
terms of elementary functions 

4Z 2 + [~V 2 - 4 a V Z -  4[~Z + 2a[W + a21$ = 0, ~ = const (4.8) 

Remark 3. Other values of the parameters for which the solution of Eq. (4.7) can be expressed in terms of 
elementary functions are, of course, also possible. For example, for k = --4 its integral has the form 

V2Z=~(2VZ+aZ+V(V-a)2),  1~ = eonst 

However, they will not be considered here. 

5. P A R T I C U L A R  S O L U T I O N S  

We will illustrate the method for the further investigation of system (3.6) for a particular value of the 
parameter k = 4. This case corresponds to isentropic gas flows. Integral (4.8), for different values of 
the parameter 13, gives a family of second-order curves in the (V, Z) phase plane: when 13 > a 2 we have 
a family of ellipses, when 13 < a 2 and 13 ¢ 0, we have hyperbola, and when 13 < a 2 and 13 = 0 we have 
a pair of straight lines Z = 0 and Z = aV. Finally, when 13 =a 2 Eq. (4.8) degenerates and gives the 
straight line 

Z = a(V + a)/2 (5.1) 

The centre of the hyperbola and the ellipses obtained when 13 ~ a 2, is situated at the point 
(110, Z0) = (0, 13/2). Moreover, curve (4.8) can intersect the Z = 0 axis only at those points when it 
degenerates into a straight line. The pattern of the integral curves (4.8) is shown in Fig. 1 for different 
values of the ratio 13/a z. 

When curve (4.8) degenerates into a straight line, an explicit construction of the solution of system 
(3.6) is possible. 

The case 13 = a 2. from Eq. (4.8) we obtain relation (5.1) between the square of the invariant velocity 
of sound Z and the peripheral component of the velocity V. By definition Z I> 0, i.e. V t> --a by virtue 
of the fact that a 1> 0. Substituting the expressions for z from (5.1) and for U from (3.8) into the first 
equation of (3.6) and taking into account the limitations on the parameters imposed earlier, we obtain 
and equation for V 
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Y 
0.~ / 

//(,,,..~._, 0 . 7 5 ~ ,  

Z=O 
0 tZ # V 

Fig. 1. 

(V') 2 = 2(V +a)2 f (V)  
(V +a12)2 , f (V)= a~[I V(V +a)l - V 2 - a v - I  (5.2) 

In order for a periodic solution of Eq. (5.2) to exist it is necessary to choose the parameters of the 
problem so that in~tevals [Vt, Vr] exist, at the ends of which the function f ( I0  has simple roots, while 
inside it is positive. It is necessary to satisfy the requirement Z t> 0, i.e. V1/> --a. Moreover, the section 
(Vt, V~) must not contain the point V = --a/2, since within this section the derivative l/'(q 0 becomes 
infinite. 

Lemma 2. The required section [Vt, Vr] is constructed by the following algorithm: the left limit 
Vt is chosen arbitrarily from the interval (0, V÷) (1,I_+ = ( - a  - ~/(a 2 + 4))/2. Here  the constant (x is found 
from the equationf(Vt) = 0. The fight limit Vr is found as the unique root of the equation f(Vr) = 0, 
which lies on the semiaxis (V÷, +oo). 

Proof. A calculation of the derivativef(V) and elimination of the parameter a using the equationf(l 0 = 0 give 

, (V+a l2 ) (V -  V_XV- V+) (5.3) 
f (V) Ij'(v)=o = - V(V + a) 

Note that V_ < -a ,  i.e. this root does not lie in the permissible range of variation of V. Moreover, V+ > 0 for 
any values of a. The sign of the derivative f(V) at the points f(V) = 0 is determined from relation (5.3) and is as 
follows: 

f'(V)ll(v)=o >0 for V~(-a,-a/2)u(O,V+) 

f'(V)lf(v)=o <O for V e(-a/2,0)u(V+, +**) 

Note thatf(-a)  = f(0) = - 1 < 0 andf(l 0 ---> - ~  as V---> +~. Hence, by choosing the left limit Vt from the intervals 
(--a, --a/2) or (0, V÷) and determining the constant from the equationf(Vt) = 0, we can guarantee the existence of 
the point Vr in the ranges (--a/2, 0) or V÷, +~, respectively. But in the first case the section [Vt, Vr] necessarily 
contains the point V = -a/2, and of course, does not satisfy the above-mentioned requirements. The second possibility 
remains, which is also indicated in the formulation of the lemma. 

The process of constructing a periodic solution of Eq. (5.2) reduces to the following. For a specified 
a ~ 0 we choose an arbitrary value of Vt from the interval stipulated in Lemma 2. From this, by virtue 
of Lemma 2, we determine the values of the constants a and Vr. The function ~(V) in the interval 
[1/1, Vr] is monotonic and is calculated by the quadrature 
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v ( V + a l 2 ) d V  

~o(V)=I 2(V+a)  f ~  vl 

The inverse function V(~o) is extended to all values of ~o as even periodic with half-period T = ~o(Vr). 
In order for the solution obtained to be continuous over the whole (r, 0) plane we must require that 

the function V(~p) must be periodic in ~ with period 2-rr, which is equivalent to the equality 

N T  = ~ (5.4) 

with a certain natural number N. Equation (5.4) was checked numerically. It turned out that by choosing 
the parameters a and Vt it can be satisfied with N = 1, 2, 3, . . . .  

The gas flow pattern in the solution obtained is illustrated in Fig. 2. For a = 4 the left limit V/can 
be chosen arbitrarily from the interval (0; 0.236). The choice of Vt = 0.110 ensures continuity in the 
plane of the solution with N = 8. The invariant streamline is shown in Fig. 2(a). It can be seen that it 
is invariant under rotation by an angle that is a multiple of ~r/4. The contact characteristics of the two 
families (4.3) and (4.5) are constructed in accordance with the previously mentioned algorithm. Their  
intersection gives the world line of a particle, the projection of which onto the (r, 0) plane (the trajectory) 
is given in Fig. 2(b). 

The case 13 = 0. As shown above, in this case integral (4.8) degenerates into a pair or straight lines 
Z = 0 and Z = aV .  T h e  first of these gives a vacuum state and is of no interest. Substitution of the 
second into the remaining equation of (3.6) gives an equation whose solution is expressed explicitly. 
Hence, we obtain an explicit solution of system (3.6) which, by virtue of (4.6), describes the gas motion 
with a constant invariant vorticity 

U = X sin 2 9, V = ct + ~ cos 2cp 

Z = a(~ + ~ cos 2tp), )C = 40~2 - I + a 2 (5.5) 

A solution exists when a 2 + a 2 t> 1. This tracks the difference in the nature of the flow quite well 
when a > 1, a < 1 and a = 1, which was mentioned earlier. In fact, when a < 1 for any ~ we obtain 
Z > 0, and of course, the solution (5.5) is "physical" over the whole plane. When a = 1 we have the 
separate value ~0vac = "rr/2 + "rrk (k is an integer) for which Z = 0. Hence, there is a vacuum line 
q~ = ~vac in the flow. In the initial variables the straight line x + ty = 0 corresponds to the vacuum line. 
Finally, when a > 1 the function z is only positive in the sectors 

S+= I--~v,~<~<~v=, n-~ov=<~o<n+~va~} 

tpvac = arctg((ot + ~) / ~ a  2 - 1 ) 

At the boundary of these sectors it vanishes and is negative outside them. Extending the function Z 
continuously to zero outside S+, we obtain a solution, continuous over the whole plane, describing the 

f 

L 

. . y  (b) (a) 

o 

i I 

Fig. 2. 
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gas flow with vacuum regions. The change to the initial variables is made by making the replacement 
0 = ~0 + a arctg t. 

In Cartesian coordinates ~ -- h cos ~o, -q = h sin ~ the equation of the invariant streamline (4.1) in 
solution (5.5) has the form 

((X "4" ~ ) ~ 2  -F ((g --  ~)T~ 2 = 1/ '4a (5.6) 

When a < 1 streamline (5.6) is an ellipse, when a = 1 it is pair of straight lines and when a > i it is a 
hyperbola. When a > 1 the asymptotes of hyperbola (5.6) coincide with the boundaries of the vacuum 
zone. 

The hyperbolicil~y condition (2.5) on solutions of the form (3.1) can be rewritten as 

z < Q2 = o~ + v 2 (5.7) 

Flow of the form (:3.1), for which inequality (5.7) is satisfied over the whole (h, ~o) plane will henceforth 
be conditionally called "supersonic". Correspondingly, if the inverse inequality Z > Q2 is satisfied over 
the whole (h, q~) plane, this flow will be called "subsonic". Finally, if the inequality Z < Qz is satisfied 
on one part of the plane while on the other Z > Q2, this flow will be called "transonic". Here the 
transition line frota "subsonic" to "supersonic" flow is the "sonic line". 

A check of inequalities (5.7) for solution (5.5) shows that in the plane of  the parameters (a, or) the 
region of "transonic" flows is defined by the inequality (1 - a z) × (1 - 2act) < 0 (shown hatched in 
Fig. 3). In this case the "sonic line" will be the line 

Ip = Ipc,  c o s  2 tpc  = ( 2 0 t  2 - a c t  + a 2 - i ) x  - I  ( a  - 2or) -I 

At the boundary of the "transonic" region we have the following: gas flows that are "supersonic" 
over the whole (k, ~o) plane correspond to the curves AD, BE and BF (Fig. 3), with the exception of 
the straight lines ~% = ~r/2 forAD and BE and ~c = 0 for BF, on which the velocity of sound is reached. 
"Subsonic" gas flow over the whole plane corresponds to curvesAB and BC, with the exception of the 
straight lines ~o c = 0 for AB and q~c = "tr/2 for BC, which are also "sonic lines". For cases when the 
parameters (a, a)  are chosen from BC or BE, the "sonic line" coincides with the vacuum line, which 
occurs when a = 1. "Sonic" flow over the whole (h, ~p) plane corresponds to points A, B and C, when 
Z = Qz. Finally, "supersonic" flow corresponds to the regions indicated by numbers 1 and 2 in Fig. 3, 
while region 3 con'esponds to "subsonic" flow. 

Note that in solution (5.5) the invariant pressures p and density p are constant along the invariant 
streamline (5.6). P, everting to the "physical" variables we obtain that in solution (5.5) the pressure p 
and the density p along the contact characteristic (4.3) depend only on the time. 
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6. THE S I M P L E  S O L U T I O N  

Below we will consider one of the possible invariant solutions of rank 0 for system (1.3). It is constructed 
in the two-dimensional {//1, H2 + kH3} subalgebra and of course, is identical with the {O~}-invariant 
solution of Eqs (3.2). In addition this solution can also be obtained directly from the gas=dynamic 
equations (1.1) as a "single-step" solution. Hence, we are dealing with a submodel which, in view of 
the Lie-Ovsyannikov-Talyshev lemma can simultaneously be regarded as "single-step", "two-step" and 
"three-step". 

To obtain this solution we must assume the functions U, V, P, R and s from (3.1) to be independent 
of q~. Substituting into (3.1) we obtain the solution 

tr Vr Pr k Rr k-2 
u = - -  u = , p =  +!)2+k/2 p=( t2+ l )~ /2  t 2 + 1 '  t 2+ l  (t 2 ' 

S =  S°r4-~ c 2 = Zr2 
( t2+l)  2-k/2' ( t2+l )  2 (6.1) 

in which the constants V, P, R, So and Z are related as follows: 

I/2 = 1 + kPIR, Z = 2P/R, P = SoR 2 

By virtue of relation (4.6) the invariant vorticity ~ in this solution is constant. 
The trajectory of a particle which starts at t = 0 from the position (r0, 00) is given by the formulae 

r=ro  t2~-~+l, O = O o + V a r c t g t  

Hence, the trajectory of an arbitrary particle is obtained from a single standard particle with r0 = 1, 
0 0 =  0 by a homothetic transformation with coefficient r 0 and anticlockwise rotation by an angle 0o. 

To find the sonic characteristics C -+ of Eqs (1.1) in the form h(t, r, O) = const we must solve the equation 

h t +uh r + r-lho +c4h2r + r-2h~ = 0  (6.2) 

The characteristic conoid is the geometrical location of the characteristics of Eqs (6.2) (the 
bicharacteristics of the gas-dynamic equations), emerging from the point (t, r, 0) =(0, r 0, 00). In the 
solution (6.1) its equation is 

r + ( 0 - 0 0  - Varctgt) 2 = Zarctg 2 t 
In ro4t 2 + I 

The equations of the sonic characteristics C -+ in solution (6.1), passing through the curve r 0 = f(00) at 
t = 0, are given parametrically by the formulae 

r=  f(Oo)~t2 + le klarcts', O=Oo + ( g - k 2 ) a r c t g  t 

A feature of the solution is the existence of a "dead zone" in the neighbourhood of the origin of 
coordinates, into which no sonic perturbations penetrate at any time. The size of the "dead zone" 
depends on the initial position of the source of sonic perturbations. 

I wish to thank L. V. Ovsyannikov for his comments and interest. 
This research was supported financially by the Russian Foundation for Basic Research (99-01-00523) 

and the Council of Leading Scientific Schools (95-15-96283). 



The two-dimensional motions of a gas with a special adiabatic exponent 557 

R E F E R E N C E S  

1. OVSYANNIKOV, L. V., The PODMODELI program. Gas dynamics. Pr/k/. Mat. Mekh., 1994, 58, 4, 30--55. 
2. KHABIROV, S. V., .A non-stationary invariant solution of the equations of gas dynamics, describing the expansion of a gas 

to a vacuum. Prikl. Mat. Mekh., 1998, 52, 6, 967-975. 
3. OVSYANNIKOV, L. V., Groups and invariant-group solutions of differential equations. DoM. Akad. Nauk SSSR, 1958, 118, 

3, 439--442. 
4. OVSYANNIKOV, L. V., Group Analysis of Differential Equations. Nauka, Moscow, 1978. 
5. NIKOL'SKII, A. A., Invariant transformations of the equations of motion of an ideal gas for special cases. Inzh. Zh., 1963. 

3, 1,140-142. 
6. OVSYANNIKOV, L. V., The hierarchy of invariant submodels of differential equations. Dokl. Ross. Akad. Nauk, 1998, 361, 

6, 740-742. 
7. OVSYANNIKOV, I.,. V., Plane gas flows with closed streamlines. Dokl. Ross. Akad. Nauk, 1998, 361, 1, 51-53. 
8. CHERNYI, G. G., Plane steady self-similar vortex flows of an ideal fluid. Izv. Ross. Akad. Nauk, MZhG, 1997, 4, 39-53. 
9. OVSYANNIKOV, I.,. V., Lectures on the Fundamentals of Gas Dynamics. Nauka, Moscow, 1981. 

Translated by R.C.G. 


